Introducing Differential Equations to Social Scientists

Pascal R. Deboeck University of Kansas

Computationally Intensive Modeling of Social Interaction November 8, 2014

イロト 不得下 不良下 不良下し

Introduction

- Repeated intraindividual observations, typically on continuous variables, significant proportions of measurement & process/dynamic error, missing data, unequal lags
- Differential equations (characterize intraindividual variability, interesting parameters, parameters that are independent of sampling rate, variation in lags between observations...)
- The Challenge
- Three ideas:
 - "Related Change"
 - Translating theory into testable models
 - Math 115 and Math 866

Э

900

Related Change

Time

Time

イロト イロト イヨト イヨト

Score

Describing Change

Non-tandem Changes

Level, Velocity, Acceleration

€ 990

Related Change

		Construct 2		
		Level	Velocity	Acceleration
	Level	Level-Level:		
		Are high levels of maternal		
		depression observed with high		
		levels of child behavior problem?		
	Velocity	Velocity-Level:	Velocity-Velocity:	
		Is a mother's level of depression,	Does the rate at which	
		regardless of whether her	mother's depressive	
		symptoms are changing or not,	symptoms increase or	
		related to the rate at which her	decrease (velocity) predict	
		child's behavior problems	the rate at which her child's	
Construct 1		increased or decreased (velocity)?	behavior problems increase	
			or decrease (velocity)?	
	Acceleration	Acceleration-Level:	Acceleration-Velocity:	Acceleration-Acceleration:
		Does the mother's level of	Does the rate at which a	Do increasing or decreasing
		depression predict increases or	mother's depression	rates of change in maternal
		decreases in the rate of change of	improves or worsens	depression (changes in
		her child's behavior problems	(velocity) predict increases or	velocity, acceleration) predict
		(changes in velocity,	decreases in the rate of	increases or decreases in the
		acceleration)?	change of her child's behavior	rate of change of her child's
			problems (changes in	behavior problems (changes
			velocity, acceleration)?	in velocity, acceleration)?

From an unpublished paper by P. R. Deboeck, J. S. Nicholson, C. D. Kouros, J. Garber & T. D. Little

・ロト・日本・日本・日本・日本・日本

Physical Analogy

▲ロト▲母ト▲目ト▲目ト 目 のへぐ

Physical Analogy

▲ロト▲母ト▲目ト▲目ト 目 のへぐ

Estimating Derivatives

$$\blacktriangleright x_t = x_{t-1} + \left(\frac{dx}{dt}\right) dt$$

Everyone has one estimate of velocity

Continuous Time Models

Another Model

$$\blacktriangleright \ \frac{dX}{dt} = \beta X + \varepsilon$$

► First–order stochastic differential equation model

 $\frac{dX}{dt} = \beta X + \varepsilon$

 $\frac{dX}{dt} = AX + \varepsilon$

 $\frac{dX}{dt} = AX + \varepsilon$

= 900

イロト イポト イヨト イヨト

Summary

► Three ideas:

- "Related Change"
- Translating theory into testable models
- Math 115 and Math 866

Deception Debrief:

- Derivatives
- Differential Equations
- Stochastic Differential Equations

・ロト・日本・日本・日本・日本・日本