State Space Grids and Multivariate Multilevel Survival Analysis

Emotion Dynamics

- Rise & Fall of one state
 - Onset, Latency, Rise Time, Intensity, Duration, Offset (Thompson, 1990)
- State-to-state Change (Variability)
 - Flexibility/Rigidity, Diversity, Predictability, Inertia

State Space Grids

GridWare www.statespacegrids.org

State Space and Attractors

- State space: "space" of all *possible* states of a system
- Attractors: "absorbing" states that have a high probability of recurrence
- Repellors: states that rarely, if ever, occur.

Hypothetical State Space

A = Deep ("strong") attractor
B= Shallow ("weak") attractor
C = Attractor basin
D = Repellor

- = Mutual Negative
- = Mutual Positive
- = Permissive
- = Harsh

State Space Grid: Dyad

Plotting behavior on a State Space Grid

C3_3.trj					
Child affect	Positive				
	Neutral				
	Negative				
	Hostile				
Hostile Negative Neutral Positive Mother affect					

A well-regulated (flexible) system has many attractors

SSG Variability

More Cells \rightarrow Dispersion

More Transitions

Higher Entropy

Shorter Average Durations

 $\overline{\text{Fewer Cells}} \rightarrow \overline{\text{Dispersion}}$

Fewer Transitions

Lower Entropy

Longer Average Durations

Some Results to Date

- Parent-child rigidity associated with psychopathology and poor outcomes (e.g., Dishion et al., 2004; Hollenstein et al., 2004)
- Dyadic flexibility associated with child's inhibitory N2 amplitude (Lewis et al., 2012) and improvements due to treatment (Granic et al., 2007)
- Dyadic flexibility better predictor than individual flexibility (van der Giessen et al., in press)
- Patterns may be different in infancy and toddlerhood (Lunkenheimer et al., 2011; Sravish et al., 2014)

Types of Analysis

- 1. Single cell or region (group of cells)
- 2. Whole-grid indices (e.g., flexibility)
- 3. Grid-to-grid change
- 4. 3 or more dimensions
- 5. Complementary Analyses: Attractor analysis with MMSA

Three 2D = One 3D4x4x4 = 4x16 = 64 cells

Parents (Mother/Father)

Hollenstein, Allen, & Sheeber (in press)

Momdad

Triadic Flexibility

(Hollenstein, Allen, & Sheeber, in press)

- Triads with depressed children → more Dispersion and Entropy (no Transition differences)
- Not just more negative affect
- Discriminant function analysis to get attractors
- Depressed triads: less triadic matching

3-step changes T1-T2 $\Delta \rightarrow$ T2-T3 Δ

Butler, Hollenstein, Shoham, & Rohrbaugh (2013)

Butler, Hollenstein, Shoham, & Rohrbaugh (2013)

- As predicted, double smokers successfully used engagement to down regulate partner negative affect
- Use of protective buffering had unintended effect of up-regulating negative affect

New! State space grids in Mangold www.behavior-research.com

Multivariate Multilevel Survival Analysis Courtesy of Jess Lougheed

Hazard Rate

- The hazard rate is the rate at which behaviors happen given that a person is at risk, that is, capable of experiencing the event.
- H = the likelihood of a person performing the observable target behavior given that they are currently capable of doing so (i.e., they are not currently engaging in the behavior).
- The risk period is referred to as the waiting time or duration.

Note. Mother states include Supportive CR (SCR) and Other (O). Child states include negative affect (NA) and other (O).

Mother supportive co-regulation

(Lougheed, Hollenstein, Lichtwarck-Aschoff, & Granic, in press)

- 8-12 y.o. externalizing children (EXT) and controls
- Supportive Co-regulation = validation, reappraisal, positive emotional directives
- Two models:
 - Mom supportive response to Child NA
 - Transitions out of Child NA following Mom support

(Mills, 2010; Stoolmiller & Snyder, 2006)

Note. Mother states include Supportive CR (SCR) and Other (O). Child states include negative affect (NA) and other (O).

Results Summary

- Group differences:
 - Not on frequency
 - Not on duration
 - Not on overall probability of Mom Support
 - Model 1: Mom supportive response to NA
 - EXT less likely to respond supportively to NA
 - Model 2: Transitions out of NA following Mom support
 - EXT less likely to transition out of NA when Mom is supprtive

State Space Grids Hollenstein (2013)

- Well-suited to analyses of interaction data
- Can be used on its own as well as in concert with other analyses
- Just beginning to scratch the surface of possibilities...

2 Spring

fam Balbert birt

State Space Grids

Internet Dynamic & Abersi Development

Acknowledgments

- Queen's University
- Social Sciences and Humanities Research Council
- Canadian Foundation for Innovation
- Natural Sciences and Engineering Research Council
- National Institutes of Health
- Jess Lougheed, Dianna Lanteigne, Marc Lewis, Isabel Granic, Emily Butler, Anna Lichtwarck-Aschoff, Nick Allen, Lisa Sheeber, Mike Stoolmiller, Jim Snyder, Tom Dishion, Jerry Patterson, and many others...

Thank You

Tom.Hollenstein@Queensu.ca www.statespacegrids.org

Relations of Hazards To Other Obs Measures

- Anger Incidence or Simple Rate = $I_A = h_A h_{NA}/(h_A + h_{NA})$. Note that I_{NA} is the same value.
- Anger Average Duration = $D_A = 1/h_{NA}$.
- Anger Prevalence or Duration Proportion = P_A = $h_A/(h_A + h_{NA})$.
- Entropy = $-[P_A * log(P_A) + P_{NA} * log(P_{NA})].$

